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SUMMARY

A numerical study of laminar flows is carried out to examine the performance of two second-order
discretization schemes: a total variation diminishing scheme and a second-order upwind scheme. The
former has the same form as the standard first-order hybrid central upwind scheme, but with a numerical
diffusion reduced by the Van Leer limiter; the latter is based on the linear extrapolation of cell face values
using the two upwind neighbors. A collocated grid arrangement is used; oscillations which could be
generated by pressure–velocity decoupling are avoided via the Rhie–Chow interpolation. Two iterative
solution methods are used: (i) the deferred correction procedure proposed by Khosla and Rubin and (ii)
implicit treatment of the second-order upwind contribution. Three two-dimensional laminar test cases are
considered for assessment: the plane lid-driven cavity, the plane backward facing step and the axisymmet-
ric pipe with sudden contraction. Experimental data are available for the two last cases. Both the total
variation diminishing and the second-order upwind schemes give wiggle-free results and can predict the
flowfields more accurately than the standard first-order hybrid central upwind scheme. © 1998 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The accuracy of numerical predictions in computational fluid dynamics (CFD) may be
significantly affected by the discretization scheme chosen for the convective terms. The classical
hybrid central upwind scheme (CU) [1] is only first-order-accurate and therefore introduces
excessive numerical diffusion in flows which are dominated by convection.

Several second-order-accurate schemes have been developed during the last 20 years, such as
the quadratic-upstream interpolation for convective kinematics scheme (QUICK) [2] and the
second-order upwind scheme (SOU) [3]. The simple model problem analysis indicates that
these schemes are prone to numerical oscillations (‘overshoots’ and ‘undershoots’), therefore,
modified versions of the QUICK scheme [4,5] and second-order total variation diminishing
schemes [6,7] (TVD) which are free of numerical oscillations have been developed. The
application of TVD schemes has been limited mainly to supersonic flows, where sharp
gradients associated with shock waves must be captured, while their use for incompressible
flows has recently been proposed by Jones [8] for the simulation of low Mach number
turbulent combustion problems. Their implementation is straightforward, starting from the
CU scheme as their founding lies on the limitation via a flux limiter [9,10] of the first-order
upwind numerical diffusion.
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In this work, the SOU and TVD schemes were implemented in a multiblock code
developed by the author [11], based on a collocated grid arrangement (no staggering).
They were tested on three two-dimensional laminar test cases: the plane lid-driven cavity,
the plane backward facing step (recirculating flows) and the axisymmetric pipe with sud-
den contraction.

The main difficulty encountered when implementing second-order schemes is that the
coefficient matrix obtained from the quasi-linear approximation of the discretized equa-
tions may loose its diagonal dominance for the case of convection-dominated flows, and
stability problems may arise during the iterative solution of the Navier–Stokes equations.
This is the case for e.g. the TVD scheme, unless very small relaxation parameters in the
momentum equation are used; on the contrary, the CU scheme always ensures a diago-
nally-dominant coefficient matrix.

In order to obtain a diagonally-dominant coefficient matrix during the iterative solution
of the incompressible Navier–Stokes equations, the deferred correction method originally
proposed by Khosla and Rubin [12] was used here with the TVD and SOU schemes.
According to this method a numerical scheme characterized by a diagonally-dominant
coefficient matrix (e.g. the CU or a fully upwind scheme) is solved implicitly, while the
extra deferred correction term of the second-order scheme is treated as an explicit source.

The results obtained in this study using the CU, TVD and SOU schemes were com-
pared with the numerical results of Ghia et al. [13] for the plane lid-driven cavity flow,
the experiments by Armaly et al. [14] for the plane backward facing step and the experi-
ments by Durst and Loy [15] for the axisymmetric pipe with sudden contraction.

The objective of the present work is twofold:

1. to assess the performance of the TVD and SOU schemes with respect to the CU scheme;
2. to identify, on the basis of the tests performed, advantages and disadvantages of the Khosla

and Rubin deferred correction method.

2. GOVERNING EQUATIONS

The governing equations for two-dimensional, incompressible, steady laminar flows can be
written in a Cartesian-cylindrical co-ordinate system as follows:
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where j=0 applies to plane cases and j=1 to axisymmetric cases. In these equations u
and 6 are the velocity components in the x- and y-directions respectively, r is the density,
p the pressure and n the kinematic viscosity.
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3. NUMERICAL METHOD

The momentum equations are discretized with the finite volume method based on a collocated
grid arrangement (non-staggered grid) shown schematically in Figure 1.

The diffusive terms are discretized by central differencing. The convective terms are
discretized here by three different schemes: the first-order hybrid central upwind CU scheme,
a hybrid central-TVD scheme (globally second-order-accurate) and the second-order upwind
SOU scheme.

In the case of CU and TVD schemes the convective plus diffusive flux for the generic
variable (e.g. at the east boundary) is set as:�
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where the diffusion coefficient Ge depends on the face Peclet number Pee= �ue�(xE−xP)/n :

Ge=n, if Pee52, (5)
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ce being a numerical diffusion limiter assumed equal to zero in the case of the CU scheme and
equal to the Van Leer limiter [10] in the case of the TVD scheme. In the last case, the
expression for ce is given by:

ce=
re+ �re�
1+re

,

re=
fP−fW

fE−fP

, ue]0,

re=
fE−fEE

fP−fE

, ueB0. (7)

Figure 1. Finite volume grid.
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Similar expressions hold for the west, north and south faces. These schemes are of the hybrid
type: central differencing is used for Pe52, and upwinding for Pe\2. For Pe\2, the
physical diffusion term is omitted in order to ensure continuity with the central difference
scheme used for Pe52.

In the SOU scheme the convective flux for the generic variable f (e.g. at the east boundary)
is calculated assuming a linear interpolation between the two upstream nodes:

[uf ]e=
(u+ �u �)e

2
(1.5fP−0.5fW)+

(u− �u �)e

2
(1.5fE−0.5fEE). (8)

Also in this case, similar expressions hold for the west, north and south faces.
The conservation Equations (2) and (3) for the momentum components are cast in the form:
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where Se, Sw, Sn, Ss are the east, west, north and south cell faces surfaces, VP the cell volume
and QP is the extra deferred correction term. A 2−Dx central differences discretization of the
pressure gradient components was used in these equations.

The iterative solution algorithm is based on the SIMPLE method [1]; the step from iteration
(n) to iteration (n+1) can be summarized as follows:

� The velocity components u*, 6* are guessed at an intermediate iteration, solving the
following equations in relaxed form:
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where the purpose of the relaxation parameters is to improve convergence by limiting the
velocity variations.

� The velocity components at the iteration step (n+1) are obtained from the relations

uP
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where dp (n+ l)=p (n+ l)−p (n) is the pressure increment between two consecutive iterations.
� The algebraic relations (13) and (14) are inserted in the mass conservation Equation (1)

integrated over the finite volume:

u e
(n+1)Se−uw

(n+1)Sw+6n
(n+1)Sn−6 s

(n+1)Ss=0. (15)

In order to avoid pressure–velocity decoupling, the velocity components on cell boundaries
are calculated using the Rhie–Chow interpolation method [16], i.e. according to the linear
interpolation of the velocity values u* (6*) in the two nodes adjacent to the boundary, each
of them purified by the 2−Dx(2−Dr) pressure gradient contribution and incremented with
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the 1−Dx (1−Dr) contribution between the two adjacent nodes; e.g. at the east boundary
such interpolation at iteration (n+1) yields:
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where 1/APE
and (1/AP)e represent the inverse of the AP coefficient at the east node and east

face, respectively. The velocity components calculated in Equation (16) are introduced into
Equation (15), giving the following Poisson-type equation for the pressure correction:
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aE=ru

Se

2
� 1

AE

+
1

AP

�
, aW=ru

Sw

2
� 1

AW

+
1

AP

�
, (18)

aN=r6
Sn

2
� 1

AN

+
1

AP

�
, aS=r6

Ss

2
� 1

AS

+
1

AP

�
, (19)

aP= %
NB=E,W,N,S

aNB (20)

m; *=u e*Se−uw*Sw+un*Sn−u s*Ss. (21)

The use of a non-staggered grid arrangement is more convenient than the staggered grid,
because it leads to a simpler and more efficient formulation of the boundary conditions,
especially in the case of a multiblock code such as the one used in this work.

� Finally, the momentum and pressure correction equations are solved iteratively using a
tridiagonal matrix algorithm (TDMA) until convergence is achieved, i.e. the total mass and
momentum residuals are below a prescribed tolerance.

The expressions for the coefficients AP, ANB depends upon the discretization scheme used. In
the cases of the CU and TVD schemes these coefficients are given by:
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AP=AE+AW+AN+AS, QP=0, (26)

where the diffusion coefficients Gnb, nb=e, w, n, s are given by Equation (5) or (6) according
to the face Peclet number. It is not difficult to verify that the condition of a diagonally-dom-
inant coefficient matrix given by:
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�AP�]%
NB

�ANB � (27)

is always satisfied by the CU scheme, but not by the TVD scheme. This is due to the fact that
the off-diagonal coefficients can be negative in the case of convection-dominated flows,
therefore stability problems could arise in the last case during the numerical solution of the
Navier–Stokes equations.

In order to have an iterative solution method based on a diagonally-dominant coefficient
matrix when using the TVD scheme aswell, two different methods were adopted. The first of
these methods is represented by Khosla and Rubin’s deferred correction procedure; in this case
the ANB coefficients are set as in Equations (22)–(25) assuming cnb=0 (which corresponds to
the CU scheme) and the deferred correction term QP (treated explicitly) is given, for instance
at the east face, by:

QP=0 if Pee52, (28)

QP= −
�ue�
2

(xE−xP)ce

fE−fP

xE−xP

Sew if Pee\2 and (1−ce)
�ue�
2

(xE−xP)\n, (29)

QP=
�

−
�ue�
2

(xE−xP)+n
n fE−fP

xE−xP

Sew if Pee\2 and (1−ce)
�ue�
2

(xE−xP)Bn.

(30)

The second method increases the diagonal dominance of the coefficient matrix by employing
small values for the relaxation parameters ru and r6 ; e.g. the coefficient matrix obtained
incorporating expressions Equations (22)–(26) for the case of the TVD scheme in Equations
(11) and (12) can be made diagonally-dominant by using relaxation parameters which are
continuously updated every iteration and such that the condition
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is satisfied over the whole flowfield.
The following implementation, where as many terms as possible are treated implicitly to give

a diagonally-dominant coefficient matrix, was instead adopted for the SOU scheme:
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This implementation of the SOU scheme gives a diagonally-dominant matrix; in fact, the
coefficients ANB are always positive.

Moreover, the Khosla and Rubin method has been implemented in this case. The coeffi-
cients are given by:
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where a full upwind scheme is solved implicitly.

4. COMPUTATIONAL RESULTS AND DISCUSSION

4.1. Lid-dri6en ca6ity flow

The schematics of this test case, which has been extensively studied [13,17,18], are shown in
Figure 2. The numerical results obtained by Ghia et al. [13] with a higher order scheme, have
been taken here as a reference solution. Four uniformly spaced grids were used: 20×20,
40×40, 80×80 and 160×160 cells. The Reynolds number is defined as Re=UL/n where U
and L are the velocity and the length of the moving wall on the top of the cavity, respectively.

Figures 3–5 show the profiles u(y) at x=0.5 and 6(x) at y=0.5 for Reynolds number
Re=1000 obtained with the CU (Figure 3), TVD (Figure 4) and SOU (Figure 5) schemes. All
residuals were reduced below the value 10−8.

Simulations with the TVD scheme were performed with the Khosla and Rubin deferred
correction method. This is certainly the most efficient iterative method; in fact, accounting
implicitly for the second-order TVD upwind contribution as given by Equations (22)–(26), it
does not run successfully unless the relaxation parameters are small enough to ensure a
diagonally-dominant coefficient matrix. This is shown in Figure 6, which reports in the case of
the 40×40 grid the zone where the ratio (�AP�/r6)/(�NB �ANB �) is less than one for different
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Figure 2. Schematics of the plane lid-driven cavity problem.

values of ru and r6. Figure 7 shows the convergence histories of the total mass residual for
the different values of the relaxation parameters; the relaxation parameters had to be
decreased to 0.2 in order to get a converged solution. The convergence history is also
reported in the figure, obtained by dynamically selecting the optimum values of the relax-
ation parameters, i.e. the largest ones which can give a diagonally-dominant coefficient
matrix over the whole flowfield, as given by relation (31). The history of such relaxation
parameters during the iterative process is shown in Figure 8.

Figure 3. Lid-driven cavity. u(0.5, y) and 6(x, 0.5) profiles obtained with the CU scheme.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 887–905 (1998)
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Figure 4. Lid-driven cavity. u(0.5, y) and 6(x, 0.5) profiles obtained with the TVD scheme.

The SOU scheme was run using Khosla and Rubin’s procedure. In this case the procedure
shows great robustness and takes less iterations to reach convergence than the more implicit
method given by Equations (32)–(37); e.g. in the case of the 40×40 grid the algorithm given

Figure 5. Lid-driven cavity. u(0.5, y) and 6(x, 0.5) profiles obtained with the SOU scheme.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 887–905 (1998)
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Figure 6. Lid-driven cavity. Zones (black) where the coefficient matrix in the 6 conservation equation is not
diagonally-dominant.

by Equations (32)–(37) converges to the same residual in about 4600 iterations, while Khosla
and Rubin’s procedure needs about 3800 iterations.

The CU scheme gives the Ghia solution only with the finest 160×160 grid. The TVD and
SOU schemes, however, can reproduce the Ghia solution with the 80×80 grid. Furthermore,
it is interesting to observe that for xB0.5 the u(y) profile using the SOU scheme converges
toward the Ghia solution in a non-monotonic way, whereas the trend is monotonic for the CU
and TVD schemes.

The calculations show that the SOU and TVD schemes are robust; no numerical oscillations
are generated even when using the SOU scheme, which is not monotonicity-preserving as is the
TVD scheme.

Figure 9 shows the convergence histories in terms of total mass residual for the three
discretization schemes, with use of the Khosla and Rubin method for the TVD and SOU
schemes. The CU scheme always needs a smaller number of iterations to converge than the
TVD and SOU schemes. The grid-independent solution using the CU scheme is obtained on
the 160×160 grid in nearly 18 000 iterations, while this position can be reached on the 80×80
grid with the SOU scheme in nearly 10 000 iterations and with the TVD scheme in nearly 7000
iterations.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 887–905 (1998)
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Figure 7. Lid-driven cavity. Convergence histories for different relaxation parameters obtained with TVD scheme and
implicit treatment of second-order contribution (grid: 40×40).

Since one iteration on the 160×160 grid takes about four times the CPU time necessary for
one iteration on the 80×80 grid, the total CPU time to obtain a grid-independent solution
with TVD scheme is 18 000×4/7000#10 times less than the CPU time necessary with the CU

Figure 8. Lid-driven cavity. Relaxation parameters ru, r6 dynamically adapted during iterations to obtain diagonally-
dominant coefficient matrices.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 887–905 (1998)
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Figure 9. Lid-driven cavity. Convergence history with the CU, TVD and SOU schemes (Khosla and Rubin’s method
used).

scheme. The CPU time needed to obtain a grid-independent solution with the SOU scheme is
18 000×4/10 000#7 times less.

4.2. Backward facing step

The second case considered is the two-dimensional laminar backward facing step, experi-
mentally studied by Armaly et al. [14]. The calculations were performed at Reynolds numbers
ranging from Re=100 to 800.

The schematics of this test case are shown in Figure 10. The domain was divided into two
blocks. Two grids were considered: in the second block, the coarse grid has 64×32 cells and
the fine one has 128×64 cells. The grids are compressed near the inlet and uniformly spaced
in the y-direction.

Two recirculation zones are present in the flow domain; a large one just downstream of the
step and a smaller one, which appears starting from Re:450, on the wall opposite to the step.

The simulations were performed with all the three discretization schemes described in the
previous section. The mass and momentum components residuals were reduced below the
value 10−5.

Figures 11 and 12 show the reattachment length x1 downstream of the step obtained with
the two grids (the calculations on the 128×64 grid were performed starting from Re:450).
The numerical results obtained by Kim and Moin [19] using the fractional step method and a
second-order scheme on a 100×100 grid are also shown. This length has been determined as

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 887–905 (1998)
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Figure 10. Schematics of the laminar backward facing step problem.

the point on the first row of nodes near the bottom wall in the computational domain where
the axial velocity component changes its sign. The CU scheme on the coarse grid predicts a
reattachment length x1, which is in agreement with the experiments until Re:300. Starting
from Re:500, the prediction for x1 begins to decrease, in contrast with the experimental value
which increases.

The TVD and SOU schemes produce more accurate results, however, the best agreement
being with the TVD scheme. On the 128×64 grid the TVD scheme performs in almost the
same way as on the 64×32 grid, showing that for such schemes the coarse grid is sufficient to
get grid-independent results. The CU scheme does not produce sufficiently accurate results,
even on the finest mesh.

Figure 11. Backward facing step. Reattachment length x1 downstream of the step. Grid 64×32.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 887–905 (1998)
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Figure 12. Backward facing step. Reattachment length x1 downstream of the step. Grid 128×64.

Figures 13 and 14 show the position of the recirculation zone at the wall opposite to the
step. Also, in this case it is confirmed that the coarse grid gives a grid-independent solution
when using the TVD scheme; using the CU scheme a grid independent solution is not obtained
even on the fine grid. The agreement with experiments when using the TVD scheme is fair.

Starting from Re=400, the experiments show some three-dimensional flow structure; this
might explain the disagreement between experiments and calculations (which are two-dimen-
sional) even using the finest mesh and the second-order schemes.

In nearly all cases, the Khosla and Rubin deferred correction procedure has been applied,
assuming the relaxation parameters in the transport equations for the momentum components

Figure 13. Backward facing step. Position of the recirculation zone at the wall opposite to the step. Grid 64×32.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 887–905 (1998)
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Figure 14. Backward facing step. Position of the recirculation zone at the wall opposite to the step. Grid 128×64.

are equal to 0.5. For Re]600 and using the TVD scheme, it was not possible to lower all
residuals below the value 10−5, even with the relaxation parameters set equal to 0.1. Figure 15
shows the convergence histories for the u-residual obtained in these two cases. The same
calculation was performed with the TVD scheme and the algorithm given by Equations
(22)–(26); this one does not converge if the relaxation parameters are set equal to 0.5. In this
case, the coefficient matrix is not diagonally-dominant over the whole field. Therefore, the
calculation was performed (as also done for the case of the lid-driven cavity flow) with the

Figure 15. Backward facing step. Convergence histories obtained with TVD scheme on the 128×64 grid.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 887–905 (1998)
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Figure 16. Schematics of the pipe with sudden contraction.

relaxation parameters dynamically adapted to values capable of ensuring diagonal dominance
everywhere, as given by Equation (31). Figure 15 shows that in this case convergence can be
achieved in about 20 000 iterations.

4.3. Pipe flow with a sudden contraction

The third test case considered is the flow in a pipe with the sudden contraction of cross
sectional area, experimentally studied by Durst and Loy [15]. The schematics of this test case
are shown in Figure 16. The case relative to Reynolds number ReD=UD/n=372 was
considered for simulation in this case, where U is the volumetric average axial velocity at the
inlet. The flow domain was divided into two blocks, one upstream (dimension 100×9.55 mm)
and one downstream (dimension 100×5.01 mm) of the sudden contraction. Two grids were
considered: a fine grid composed of 64×64 (upstream block) and 64×32 cells (downstream
block), and a coarse grid composed of 32×32 cells (upstream block) and 32×16 (downstream
block). The grid density was increased in the region of the sudden contraction where steep
variations in velocities were expected and all residuals were reduced below 10−5.

Figures 17–19 show radial profiles of the axial velocity component at six sections in the pipe
obtained with the three discretization schemes. Khosla and Rubins method was used for the
TVD and SOU schemes. The three schemes perform in a very similar way on the fine grid; in
fact, they almost give the same results which are in very good agreement with the experiments.

The TVD performs only slightly better than the CU and SOU schemes on the coarse grid;
it predicts the overshoot of axial velocity, experimentally observed just downstream of the
contraction, near the pipe wall. In any case, the solution on the coarse grid cannot be
considered to be grid-independent.

5. CONCLUSIONS

The second-order TVD and SOU schemes were applied to three laminar test cases, two of
which had large recirculation zones. The comparison with previous numerical calculations for
the case of the lid-driven cavity flow and with experiments for the case of the backward facing
step, shows that these schemes perform much better than the standard hybrid central upwind
(CU) scheme. In fact, using the CU scheme, in order to get the same accuracy of the TVD
scheme in the case of the lid-driven cavity flow, the mesh had to be doubled, resulting in an
order of magnitude increase in CPU time.
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Figure 17. Pipe flow. Radial profiles of the axial velocity component ũ at six sections in the pipe. CU scheme used.

To have an unconditionally diagonally-dominant coefficient matrix, the deferred correction
procedure by Khosla and Rubin was adopted. Nevertheless, it was found that the TVD scheme
using Khosla and Rubin’s method, may be responsible for poor convergence performance in

Figure 18. Pipe flow. Radial profiles of the axial velocity component ũ at six sections in the pipe. TVD scheme used.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 887–905 (1998)
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Figure 19. Pipe flow. Radial profiles of the axial velocity component ũ at six sections in the pipe. SOU scheme used.

the case of the backward facing step at large Reynolds number. The method based on the
implicit consideration of the TVD second-order upwind contribution, applied with relaxation
parameters sufficiently low to ensure diagonal dominance, can instead reach very low residuals
without any problems. Therefore, an adaptive (dynamic) determination of the optimum
relaxation parameters (i.e. the maximum values capable of ensuring a diagonally-dominant
coefficient matrix over the whole flowfield) has been devised and successfully tested with the
TVD scheme.

The flow in a pipe with the sudden contraction of cross sectional area was also tested. In this
case no large differences between the CU, the TVD and SOU schemes were observed.
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